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Abstract. Indication is given of the way in which the semiclassical scattering cross section, 
as a function of the scattering angle, contains hints as to whether the corresponding classical 
system shows irregular scattering. In the case of classical chaos the frequency spectrum 
of the interference oscillations of the quantum cross section contains a smeared out image 
of a classical fractal structure. I t  becomes better and better resolved in the limit of smaller 
values of h. 

1. Introduction 

One of the most fascinating open problems in chaos research is the understanding of 
the quantum mechanical behaviour of systems which show classical chaos. For bound 
systems some progress has been made by the investigation of level statistics and patterns 
of nodal lines of wavefunctions. In contrast, nothing comparable has been achieved 
for scattering systems. Whereas in classical scattering chaos the basic mechanism has 
been understood recently (see the review article by Eckhardt (1988) and references 
therein), only very little has been done for quantum scattering chaos so far. There is 
an investigation of the phase shift in the quantum mechanical scattering amplitude for 
a solvable model (Gutzwiller 1983). It was possible to describe the scattering phase 
by a Riemann (-function which can be considered to represent a chaotic function. An 
explanation of the fast fluctuations of the cross section as a function of the energy 
within a semiclassical approximation was given by Bliimel and Smilansky (1988, 
1989a, b). In this treatment some properties known from random matrix systems could 
be explained as quantum implications of classical scattering chaos. A treatment of 
resonance poles of the scattering amplitude was given within a semiclassical trajectory 
summation method by CvitanoviC and Eckhardt ( 1989). 

To get some further information on quantum scattering chaology, we take a system 
which is known to show classical chaos, treat this system semiclassically and in the 
limit of small h we find a classical fractal structure in the scattering cross section. 
Within a semiclassical approximation the scattering amplitude is expressed in terms 
of quantities given by classical scattering trajectories. So we have the occasion to trace 
properties of the scattering amplitude back to properties of the set of the corresponding 
classical trajectories. Thereby we can observe how the classical chaos enters into the 
quantum cross section. For simplicity we treat potential scattering in a two-dimensional 
position space and look at the scattering cross section as a function of the scattering 
angle 0 for fixed incoming momentum pin. We take a particular scattering potential 
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1218 C Jung 

for most of the discussions and make some remarks on the behaviour of other systems 
later. Our potential model is given by 

where x, y are Cartesian coordinates in position space. Some contour lines of potential 
(1) are shown in figure 1 of Jung and Scholz (1987) (referred to hereafter as JS). This 
potential has a relative minimum at Eo=0.40. .  . in the origin, it has three saddles at 
Es  = 0.45 . , , and three maxima at EM = 1.005 . . . . As has been demonstrated in JS, 
there is scattering chaos in this system if the energy lies in the interval ( E s ,  Eh.,) .  Its 
implications for the classical cross section are discussed in Jung and Pott (1989) 
(referred to hereafter as JP) .  

2. The semiclassical scattering amplitude 

Incoming asymptotes of the classical scattering trajectories are labelled by the three 
quantities E, cy, 6. E is the energy, in the asymptotic region E = ( p :  +pt) /2 ,  where 
py, p ,  are the momenta conjugate to x, y.  cy is the direction of the incoming momentum, 
cy =tan- '(p,/px).  b is the impact parameter, 6 = (xp, - y p , ) / m .  Instead of E and 
cy, we can use the momentum vector p,,, = ( py, p ,  ) equally well. The scattering angle 
8 is the difference between the direction of the outgoing and the direction of the 
incoming momentum. The semiclassical approximation of the scattering amplitude 
for the scattering angle 8 = e is given by 

f ( e ) = C d + x P W ] ( w h  -p,rr/211 (2) 
I 

(see, e.g., Miller 1975). The summation runs over all classical scattering trajectories, 
that come in with momentum p,, ,  and have a scattering angle 6. Let 6 be the initial 
impact parameter and e( 6)  the scattering angle as a function of 6 for fixed p, , ,  . Then 
thesumin(2)runsoverall  6valuesb1(6) whichleadto8(6,)= 8 cl = / (de /db) (b , (e ) ) / - '  
is the contribution of trajectory j to the classical cross section. SI is the reduced action 
of trajectory j ,  

S,=- q d p = -  ( x d p , + y d p , ) .  I I  
In polar coordinates r, cp and their conjugate momenta p r ,  L we find 

s,=- I 5  r d p , +  L d q  

The line integral is taken along the trajectory j ,  and the integral is independent of the 
initial and final point on this trajectory as long as both of these points are located 
sufficiently far away from the potential region. p, is the Maslov index of trajectory j ,  
i.e. the number of caustics met by trajectory j .  Equation (2) is the leading asymptotic 
approximation of the scattering amplitude for h + 0 as long as e stays away from 
rainbow angles, at which some (dO/db)(b,) becomes zero. There the approximation 
by exponential functions has to be replaced by an appropriate uniform approximation. 
In this paper we shall consider the scattering amplitude in angle intervals without 
rainbow singularities only. 
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For system (1) there is a hyperbolic invariant set A in the classical phase space. 
The stable manifolds of these localised orbits reach out into the asymptotic region and  
intersect the plane of incoming asymptotes in a fractal subset (see figure 9 in JS). Let 
us assume, that pin is fixed at a value such that this fractal set is met when we scan b. 
Then the b axis is cut into an  infinite number of intervals of continuity, in which O( b )  
is a smooth function. In between these intervals there remains a Cantor set at which 
O(b) jumps (see JS for more details). Such a behaviour is typical for all chaotic 
scattering systems, which have been analysed so far. Let us look at  a range of 8 values, 
in which unstable manifolds of li are present. Under these conditions there is an  
infinite number of b values b,, which lead to a given 0 value. 

This can be understood as follows. We take the b axis for the given pin, transport 
it through the classical phase space by the flux, thereby construct the Lagrangian 
submanifold 2( pi,) belonging to the initial condition pln and finally take the intersection 
between 2 ( p i , )  and the OIL plane of outgoing asymptotes, where L is the angular 
momentum of the outgoing trajectory. Thereby each interval of continuity along the 
b axis is mapped on a smooth curve in the 01 L plane. When b goes to the boundary 
of the interval, the image curve spirals towards a boundary line, which is the intersection 
of the OIL plane with one  branch of the unstable manifold of the periodic orbit 
oscillating over the saddle of the potential, through which the trajectories leave the 
potential interior. This behaviour is illustrated in  figure 1. pin is fixed at (-Ji?, 0) 
and  b is scanned in three intervals of continuity (R, LL, LR in the notation of J S ) .  In 
the outgoing O/ L plane one plots those three curves which are reached by trajectories 
starting in these three intervals. The curves to the infinite number of other intervals 
which go through the same saddle give similar spirals, converging towards the same 
boundary line. This infinity of spirals is arranged in such a way that their accumulation 
points form a fractal pattern, coinciding with the intersection of the unstable manifolds 
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of A with the OIL plane (for more explanations see JP) .  By D ( 8 )  we denote the set 
of L values which lie in the intersection between 2’(pin) and the line 0 = 6, in the 
outgoing e/ L plane. The accumulation points of D( 8) form a fractal set along the 
line e = The trajectories corresponding to points of D ( 8 )  are the ones which 
contribute to the sum in (2). 

System (1) has the property that for E not too close to the saddle energy Es = 0.45 . . . 
the sum in (2) is absolutely convergent, as long as the angle 6, is not at a rainbow 
singularity. First we consider the contributions coming from one particular interval 
of continuity. If bk is a contributing b value and b, is the second contributing b value 
closer to the boundary of the interval, then c, = ck/p,  where p is the eigenvalue of 
the unstable periodic saddle trajectory. For E = 0.6 we find p = 107. Therefore the 
contributions from one particular interval can be estimated by a geometric series. To 
sum over all intervals in a second step, we sort the intervals into groups of various 
generation given by the length of their signature (see JS) and obtain 2N intervals of 
generation N. There exists a number v > 4, such that going from any interval of 
generation N to a neighbouring interval of generation N +  1 the ratio of the length of 
these two intervals is greater than v. There is a one-to-one correspondence between 
the various contributions ck of any pair of intervals (see JP) .  The ratio of the strengths 
of the corresponding contributions is proportional to the ratio of the lengths of the 
respective intervals. Therefore the ratio between the sum of all contributions of the 
intervals of generation N +  1 and all intervals of generation N in the sum ( 2 )  is less 
than 2 / h <  1. Accordingly, the sum over all intervals can also be estimated by a 
geometric series, showing the convergence of the total sum. For most chaotic scattering 
systems there can be energy intervals for which the semiclassical sum in (2) is not 
absolutely convergent. In these cases an appropriate resummation scheme has to be 
applied. It might be constructed along the pattern of rearrangement of the semiclassical 
series mentioned in CvitanoviC and Eckhardt (1989). 

When it converges absolutely, then the sum in ( 2 )  can be cut off in a numerical 
treatment. We fix some numerical error boundary and estimate the number of contribu- 
tions we need in order to stay within this error boundary for the value of the amplitude. 

3. Extraction of a classical fractal set out of the semiclassical cross section 

Now we look for fingerprints of the classical chaos in the semiclassical cross section. 
We pick out a 0 interval I = [e, 8+ A131 away from all classical rainbow singularities. 
Then (dO/db)(b,) # 0 for all j and all t9 E I ,  the number of solutions of b ( 8 )  does not 
change inside I and c, varies only slowly inside I along any branch of 2?(pin) and we 
approximate 

S ( e )  is expanded up to first order around 8 
- dS, - 

dB 
s, ( e)  = s, ( e) + ( e - e )  - ( e)  (4) 

where (dS,/de)( 8) = L,( 8) is the outgoing angular momentum. Using the notation 

v, =[S,(@-JL,(J)l/h -p,7r/2 ( 5 )  
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we obtain 

f( 6 ) = 1 4 ex p( i 'p, 1 ex p( i 8LI ) ii ) 
I 
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(6) 

f is the Fourier transform of 

F ( L ) = C ~ e x p ( i ' p l ) 6 ( L - L , ) .  
I 

The support of F is the classical fractal set D ( 6 ) .  For the cross section we obtain 

The frequencies occurring in the interference terms are given by ( L k  - L , ) /  h ;  they also 
form a fractal distribution. 

Let us illustrate some of these quanties for system (1). We choose e=  5.4, which 
is far away from all classical rainbow singularities (see figure 1 and  figures in JP) .  

Figure 2 ( a )  shows the position of the most important values of Lk - L, and the values 
of the corresponding weights G. The horizontal axis gives LI, - L, on a linear scale. 
The vertical axis gives In=. Note that there is an  isolated branch of Y ( p , " )  at 

2 
P 
5 

-11 

0.75 1.05 

-1 
I C 1  

0.85 0.43 
Aigu!or momentum 

Figure 2. Plot of In fi (vertical axis) as a function of LI  - L, (horizontal axis).  The 9, 
17 a n d  32 most important branches of U(p,,) have been taken into account in parts ( a ) ,  
( b )  and  ( c )  respectively. p , ,  = (-m, 0). 
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L = 2.6 which is outside the frame of figure 1. This branch comes from trajectories 
which pass the potential on the outside and d o  not enter the potential interior through 
one of the saddles. This branch has the strongest cJ and is involved in all high values 
of L,: - LJ which lie around 2 and 2.8. 

Figures 2( b )  and 2 (  c )  are magnifications of figure 2( a )  which illustrate the fractal 
character of the distribution of L values. In figure 2 ( a )  the 9 most important branches 
of 2'( pin) have been taken into account; in figure 2( b ) ,  17 and in figure 2( c) 32 branches 
contribute. 

2 . 5  

5.400 5 .402 

2.5 , 

5.400 5.402 
Scattering angle 

Figure 3. Plot of the semiclassical cross section as a function of the scattering angle. The 
32 most important branches of U(p , , )  have been taken into account. p , , = ( - m , O ) .  
h = in part ( a )  and h = in part ( b ) .  
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Figure 3 shows ( d u / d 6 ) (  0 )  in the interval L5.4, 5.4021 where in sum ( 2 )  the 32 most 
important contributions have been taken. The cutoff of sum ( 2 )  after 3 2  terms leads 
to a relative error in the cross section of less than 4%. For h the value h = 0.000 01 
has been chosen in figure 3 (  a )  and h = 0.000 001 in figure 3( b ) .  In figure 3 (  b )  the fast 
fluctuations are not resolved, they are of the same qualitative structure as in figure 
3(a)  only compressed by a factor of 10. In figure 3 ( b )  we see the fluctuations of the 
envelope coming from the small values of Lk - L,. 

Finally we suppose that (da /dB) (0 )  is given inside I and we try to reconstruct 
D ( e )  from these data. By taking a Fourier transform of d a / d 0  over the B interval 1 
of length AB, we d o  not get infinitely sharp values of L;  instead, for each contributing 
L value we obtain a broadened peak. The width of the peaks comes from two sources. 
First, the finite length A 0  of the interval 1 causes a width A ,  = 2 7 r h / A 0 .  Second, the 
nonlinear terms omitted in expansion (4) create a broadening. Expansion (4) only 
makes sense if L, is sufficiently constant inside the interval I along each branch of 
2 ( p i n ) .  Choose S such that 

Then ILJ(0)  - LJ(e)i < 6 A 0  = A 2 .  And the broadening of the L values due to the 
nonlinearity of s,(e) is at most A 2 .  For given values of h and AB we can expect to 
resolve D( e) to an  accuracy of A = A I  + A , .  When we make h smaller and  smaller we 
let A B  decrease like By repeating the 
procedure for various values of e we can reconstruct the classical Lagrangian submani- 
fold 2 ( p , , , )  with an  accuracy h a  hl”. In  total, we have pulled a classical fractal set 
out of a quantum mechanical observable quantity, at  least approximately in the limit 
of small h. What would be the procedure for realising this idea for an actual scattering 
system? We take a system where an  enormous number of L values contribute to a 
given 0 value and analyse the weight of the various L values in du /d0 .  We try out 
various lengths A 0  of the B interval which we take for the Fourier transform, in order 
to find the A 0  value which gives the optimal resolution. For A 0  too small we obtain 
a large width A I  and for AB too large A? becomes too large. For the best value of A 0  
we plot the weights of the various L values against L and look for a fractal clustering 
which resembles the structure of figure 2. This method opens the possibility of finding 
hints for chaos in the quantum mechanical cross section as a function of the scattering 
angle. 

Then A ,  and A, both decrease like 

4. Discussion 

We have observed that in the limit of small h the spectrum of frequencies of the 
interference oscillations of the semiclassical cross section simulates a fractal structure 
well known from the classical system. We stress that we let h tend to small values but 
cannot take the value h = 0 itself. h = 0 is an  essential singularity of quantum mechanics, 
and  in the classical cross section all interference oscillations are completely absent. 
Accordingly, we can only look at the behaviour of the cross section for smaller and  
smaller values of h and see more and more levels of the classical fractal structure 
being resolved. We never reach a simultaneous resolution of the classical fractal 
structure on its infinite number of levels of scale. 
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The effects shown for system (1) do  not exist for every scattering system. The 
topological chaos in the classical phase space is caused by homoclinic and heteroclinic 
intersections between the stable and unstable manifolds of unstable periodic orbits 
running back and forth over the saddles of the potential. Accordingly, we expect chaos 
of similar structure only for those other scattering systems where the potential also 
has saddles and unstable periodic orbits with homoclinic and/or heteroclinic connec- 
tions. Under these conditions and for pln taken from an appropriate range of values, 
Lf?(p,,,) is a fractal arrangement of branches in the outgoing asymptotic region. For 
more general chaotic scattering systems we cannot expect to find a binary organisation 
in the fractal sets as we did in model system (1) (see JS and JP) .  The fractal set of 
discontinuities of e (  b )  along the b axis, the distribution of rainbows along the 6 axis 
and T ( p , , , )  may all have a more complicated organisation. However, in all chaotic 
scattering systems the outgoing L values contributing to a particular value of 8 form 
a fractal set as long as the initial condition p,,,  lies in the chaotic region. Under these 
conditions the interference oscillations of the semiclassical cross section contain a 
smeared out image of the fractal structure of the classical Lagrangian submanifold 
Lf?(P in) .  
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